The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain.
نویسندگان
چکیده
Progenitor cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing forebrain give rise to neurons and glial cells, and are characterized by distinct morphologies and proliferative behaviors. The mechanisms that distinguish VZ and SVZ progenitors are not well understood, although the homeodomain transcription factor Cux2 and Cyclin D2, a core component of the cell cycle machinery, are specifically involved in controlling SVZ cell proliferation. Rho GTPases have been implicated in regulating the proliferation, differentiation, and migration of many cell types, and one family member, Cdc42, affects the polarity and proliferation of radial glial cells in the VZ. Here, we show that another family member, Rac1, is required for the normal proliferation and differentiation of SVZ progenitors and for survival of both VZ and SVZ progenitors. A forebrain-specific loss of Rac1 leads to an SVZ-specific reduction in proliferation, a concomitant increase in cell cycle exit, and premature differentiation. In Rac1 mutants, the SVZ and VZ can no longer be delineated, but rather fuse to become a single compact zone of intermingled cells. Cyclin D2 expression, which is normally expressed by both VZ and SVZ progenitors, is reduced in Rac1 mutants, suggesting that the mutant cells differentiate precociously. Rac1-deficient mice can still generate SVZ-derived upper layer neurons, indicating that Rac1 is not required for the acquisition of upper layer neuronal fates, but instead is needed for the normal regulation of proliferation by progenitor cells in the SVZ.
منابع مشابه
Neuronal Rac1 is required for learning-evoked neurogenesis.
Hippocampus-dependent learning and memory relies on synaptic plasticity as well as network adaptations provided by the addition of adult-born neurons. We have previously shown that activity-induced intracellular signaling through the Rho family small GTPase Rac1 is necessary in forebrain projection neurons for normal synaptic plasticity in vivo, and here we show that selective loss of neuronal ...
متن کاملRac1 and Rac2 GTPases are necessary for early erythropoietic expansion in the bone marrow but not in the spleen.
BACKGROUND The small Rho GTPases Rac1 and Rac2 have both overlapping and distinct roles in actin organization, cell survival, and proliferation in various hematopoietic cell lineages. The role of these Rac GTPases in erythropoiesis has not yet been fully elucidated. DESIGN AND METHODS Cre-recombinase-induced deletion of Rac1 genomic sequence was accomplished on a Rac2-null genetic background,...
متن کاملInhibition of the Rho GTPase, Rac1, decreases estrogen receptor levels and is a novel therapeutic strategy in breast cancer.
Rac1, a Rho GTPase, modulates diverse cellular processes and is hyperactive in some cancers. Estrogen receptor-alpha (ERα) in concert with intracellular signaling pathways regulates genes associated with cell proliferation, tumor development, and breast cancer cell survival. Therefore, we examined the possibility of Rac1 and ERα crosstalk in breast cancer cells. We found that Rac1 enhanced ERα ...
متن کاملThe small Rho GTPase Rac1 controls normal human dermal fibroblasts proliferation with phosphorylation of the oncoprotein c-myc.
Proliferation of dermal fibroblasts is crucial for the maintenance of skin. The small Rho GTPase, Rac1, has been identified as a key transducer of proliferative signals in various cell types, but in normal human dermal fibroblasts its significance to cell growth control has not been studied. In this study, we applied the method of RNA interference to suppress endogenous Rac1 expression and exam...
متن کاملActivated Mutant NRasQ61K Drives Aberrant Melanocyte Signaling, Survival, and Invasiveness via a Rac1-Dependent Mechanism
Around a fifth of melanomas exhibit an activating mutation in the oncogene NRas that confers constitutive signaling to proliferation and promotes tumor initiation. NRas signals downstream of the major melanocyte tyrosine kinase receptor c-kit and activated NRas results in increased signaling via the extracellular signal-regulated kinase (ERK)/MAPK/ERK kinase/mitogen-activated protein kinase (MA...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental neurobiology
دوره 70 9 شماره
صفحات -
تاریخ انتشار 2010